Collagen-specific peptide conjugated HDL nanoparticles as MRI contrast agent to evaluate compositional changes in atherosclerotic plaque regression.
نویسندگان
چکیده
OBJECTIVES This study sought to develop magnetic resonance contrast agents based on high-density lipoprotein (HDL) nanoparticles to noninvasively visualize intraplaque macrophages and collagen content in mouse atherosclerotic plaques. BACKGROUND Macrophages and collagen are important intraplaque components that play central roles in plaque progression and/or regression. In a Reversa mouse model, plaque regression with compositional changes (from high macrophage, low collagen to low macrophage, high collagen) can be induced. METHODS This study labeled HDL nanoparticles with amphiphilic gadolinium chelates to enable target-specific imaging of intraplaque macrophages. To render HDL nanoparticles specific for the extracellular matrix, labeled HDL nanoparticles were functionalized with collagen-specific EP3533 peptides (EP3533-HDL) via poly(ethylene glycol) spacers embedded in the HDL lipid layers. The association of nanoparticles with collagen was examined in vitro by optical methods. The in vivo magnetic resonance efficacy of these nanoparticles was evaluated in a Reversa mouse model of atherosclerosis regression. Ex vivo confocal microscopy was applied to corroborate the in vivo findings and to evaluate the fate of the different HDL nanoparticles. RESULTS All nanoparticles had similar sizes (10 ± 2 nm) and longitudinal relaxivity r1 (9 ± 1 s(-1) mmol/l(-1)). EP3533-HDL showed strong association with collagen in vitro. After 28 days of plaque regression in Reversa mice, EP3533-HDL showed significantly increased (p < 0.05) in vivo magnetic resonance signal in aortic vessel walls (normalized enhancement ratio [NERw] = 85 ± 25%; change of contrast-to-noise ratio [ΔCNRw] = 17 ± 5) compared with HDL (NERw = -7 ± 23%; ΔCNRw = -2 ± 4) and nonspecific control EP3612-HDL (NERw = 4 ± 24%; ΔCNRw = 1 ± 6) at 24 h after injection. Ex vivo confocal images revealed the colocalization of EP3533-HDL with collagen. Immunohistostaining analysis confirmed the changes of collagen and macrophage contents in the aortic vessel walls after regression. CONCLUSIONS This study shows that the HDL nanoparticle platform can be modified to monitor in vivo plaque compositional changes in a regression environment, which will facilitate understanding plaque regression and the search for therapeutic interventions.
منابع مشابه
Detection of Her2 Levels in Cancerous Cells Based on Iron Oxide Nanoparticles
In this study, we synthesized Herceptin conjugated magnetic nanoparticles (HMNs) as an alternative probe to discover the levels of HER2 (Human epidermal growth factor receptor-2) in the surface of cells. These nanoparticles can be used by magnetic resonance imaging (MRI) (non-invasive methods) for screening the patients with HER2 positive or negative tumors. Dextran coated iron oxide nanopartic...
متن کاملDetection of Her2 Levels in Cancerous Cells Based on Iron Oxide Nanoparticles
In this study, we synthesized Herceptin conjugated magnetic nanoparticles (HMNs) as an alternative probe to discover the levels of HER2 (Human epidermal growth factor receptor-2) in the surface of cells. These nanoparticles can be used by magnetic resonance imaging (MRI) (non-invasive methods) for screening the patients with HER2 positive or negative tumors. Dextran coated iron oxide nanopartic...
متن کاملPotential positive MRI contrast agent based on PVP-grafted superparamagnetic iron oxide nanoparticles with various repetition times
Objective(s): The present study aimed to evaluate the capability of synthesized and modified superparamagnetic iron oxide nanoparticles (SPIONs) as the positive contrast agent in magnetic resonance imaging (MRI) by investigating the effect of repetition time (TR) on the MRI signal intensity. Materials and Methods: SPIONs were synthesized using the co-precipitation method, and their surfac...
متن کاملDiagnostic Magnetic Resonance Imaging of Atherosclerosis in Apolipoprotein E Knockout Mouse Model Using Macrophage-Targeted Gadolinium-Containing Synthetic Lipopeptide Nanoparticles
Cardiovascular disease is the leading cause of death in Western cultures. The vast majority of cardiovascular events, including stroke and myocardial infarction, result from the rupture of vulnerable atherosclerotic plaques, which are characterized by high and active macrophage content. Current imaging modalities including magnetic resonance imaging (MRI) aim to characterize anatomic and struct...
متن کاملGlucosamine Conjugated Gadolinium (III) Oxide Nanoparticles as a Novel Targeted Contrast Agent for Cancer Diagnosis in MRI
Background: Glucose transporter (Glut), a cellular transmembrane receptor, has a key role in the metabolism of cell glucose and is also associated with various human carcinomas.Objective: In this study, we evaluated a magnetic resonance (MR) imaging contrast agent for tumor detection based on paramagnetic gadolinium oxide (Gd2O3) coated polycyclodextrin (PCD) and mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JACC. Cardiovascular imaging
دوره 6 3 شماره
صفحات -
تاریخ انتشار 2013